"Work is often the father of pleasure."
Voltaire

A Solution to the Yin-Yang Equilibrium Problem ${ }^{1}$

By: Aya Khaled Al-Zarka
 Mathematics Undergraduate, KAU

1-2 Idea of Solution

To solve the problem, we make the assumption that this plate is two-dimensional (flat) and has a uniform density. Clearly, the plate will be balanced vertically if suspended from any point lying on the line $x=\bar{x}$, where \bar{x} is the x -coordinate of its center of mass (COM).

Figure 1

[^0]Next we place the origin of the coordinate system at the center of the big circle (See Figure 1). The general formula for finding the x -coordinate of the COM for a region D having density ρ is

$$
\bar{x}=\frac{1}{M} \iint_{D} x \rho(x, y) d A,
$$

where the mass M is given by

$$
M=\iint_{D} \rho(x, y) d A .
$$

But since the density is constant, we may safely write

$$
\bar{x}=\frac{1}{A} \iint_{D} x d A,
$$

where $A=\iint_{D} d A$ is the area of the plate.

Now we divide the area to three regions or subareas. For the subarea A_{1}, the COM is clearly $\overline{x_{1}}=1$ (according to the symmetry principle ${ }^{2}$). So if we compute $\overline{x_{2}}$ and $\overline{x_{3}}$ (the centers of masses of A_{2} and A_{3} respectively), then we will have like three points with their masses. This enables us to apply the basic formula

$$
\begin{equation*}
\bar{x}=\frac{m_{1} \overline{x_{1}}+m_{2} \overline{x_{2}}+m_{3} \overline{x_{3}}}{M}, \tag{1}
\end{equation*}
$$

where M is the total mass of the plate \& m's the partial masses, to obtain the x coordinate of the COM of the plate.

2-2 Calculations

In calculating the double integrals involved in the COM formula, we best describe D in polar coordinates. In x_{2} we have

$$
D=\{(r, \theta) \mid 0 \leq r \leq 2,0 \leq \theta \leq-\pi / 2\}
$$

The subarea A_{3} is bounded by the circle $(x+1)^{2}+y^{2}=1$, which becomes in polar coordinates $r=-2 \cos \theta$, and then we have

$$
D=\{(r, \theta) \mid-2 \cos \theta \leq r \leq 2, \pi \leq \theta \leq 3 \pi / 2\} .
$$

[^1]\[

$$
\begin{aligned}
\overline{x_{2}} & =\frac{1}{A_{2}} \iint_{D} x d A \\
& =\frac{1}{\pi} \int_{0}^{2} \int_{-\pi / 2}^{0} r \cos \theta(r d \theta d r)=\frac{1}{\pi} \int_{0}^{2} \int_{-\pi / 2}^{0} r^{2} \cos \theta d \theta d r \\
& =\left.\left.\frac{1}{\pi} \sin \theta\right|_{-\pi / 2} ^{0} \frac{r^{3}}{3}\right|_{0} ^{2}=\frac{1}{3 \pi}(0+1)(8-0)=\frac{8}{3 \pi} \approx 0.849
\end{aligned}
$$
\]

$$
\overline{x_{3}}=\frac{1}{A_{3}} \iint_{D_{3}} x d A=\frac{2}{\pi} \int_{\pi}^{3 \pi / 2} \int_{-2 \cos \theta}^{2} r^{2} \cos \theta d r d \theta
$$

$$
=\frac{2}{\pi} \int_{\pi}^{3 \pi / 2}\left(\left.\frac{r^{3}}{3}\right|_{-2 \cos \theta} ^{2} \cos \theta\right) d \theta=\frac{2}{3 \pi} \int_{\pi}^{3 \pi / 2}\left(8+8 \cos ^{3} \theta\right) \cos \theta d \theta
$$

$$
=\frac{16}{3 \pi} \int_{\pi}^{3 \pi / 2}\left(1+\cos ^{3} \theta\right) \cos \theta d \theta=\frac{16}{3 \pi} \int_{\pi}^{3 \pi / 2}\left(\cos \theta+\cos ^{4} \theta\right) d \theta
$$

$$
=\frac{16}{3 \pi}\left[\left.\left(\sin \theta+\frac{1}{4} \cos ^{3} \theta \sin \theta\right)\right|_{\pi} ^{3 \pi / 2}+\left.\frac{3}{4}\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right)\right|_{\pi} ^{3 \pi / 2}\right]
$$

$$
=\frac{16}{3 \pi}\left[(-1-0)+\frac{1}{4}(0)+\frac{3}{(4)(2)} \frac{\pi}{2}+\frac{3}{12}(0)\right]
$$

$$
=\frac{16}{3 \pi}\left[-1+\frac{3 \pi}{16}\right]=1-\frac{16}{3 \pi} \approx-0.697
$$

Now, substituting into (1),

$$
\begin{aligned}
\bar{x} & =\frac{\pi(0.5+0.849-0.697 / 2)}{2 \pi} \\
& =0.5 \mathrm{R}
\end{aligned}
$$

where R is the radius of the smaller circle. Of course, m is equal to "area times density", but again since density is constant, it is canceled out with its analogy in the denominator. Thus, for a plate with $R=50 \mathrm{~mm}$, the plate would be balanced vertically if suspended at $x=25 \mathrm{~mm}$. It is interesting to make a plate like this by hard paper and handle it from the line $x=0.5$ R... And enjoy visualizing your work by experiment.

[^0]: ${ }^{1}$ Submitted to the Challenging Problem Section of the F5 Magazine for Undergraduate Physicists, Saudi Physical Society, First Issue, July 2008

[^1]: ${ }^{2}$ which says that if a region in plane is symmetric about a line, then its COM must lie on that line.

