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1 Abstract

In this paper, we model the movement of ocean�s surface when a wind blows
over it. After describing and formulating the accelerations and forces acting
on an arbitrary point of ocean�s surface, we arrive at the Navier-Stokes equa-
tion for a rotating �uid. We write its component forms and reduce them to
obtain a second order di¤erential equation with constant coe¢ cients, called
the steady Ekman equation. To solve it, we develop two boundary condi-
tions. Finally, we explore several properties of the solution of this equation
and other related equations.

2 Introduction

The ocean, covering nearly 71% of Earth�s surface and a¤ecting our daily
life in many ways, has led curious people throughout history and around
the globe to explore it in di¤erent aspects for di¤erent reasons. One of the
most important and vital aspects is its integral role in Earth�s climate and
weather systems. Clearly, ocean transports heat, received from the Sun, by
means of currents.This in turn leads to variations in weather patterns in
short term (e.g. El Nino phenomenon and the associated changes in weather
patterns), and to climate changes in the long term. Applied mathemati-
cians, equiped with exploring tools, have been involved cooperatively with
scientists and explorers to study the movements of ocean water. This paper
highlights a historical example in which an analytic solution of di¤erential
equations was used to analyze successfully a real situation. The goal is to
urge math students to consider areas of job or research related to meteorol-
ogy or oceanography which are �lled with intellectual challenges for them
and their solutions would contribute to humanity.

In 1893-1896, and during the Fram expedition, the Norwegian explorer
Nansen noticed that wind tended to blow ice at an angle to the right of
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and not in the same direction of the blowing wind. He then asked Vilhelm
Bjerknes, a Norwegian professor of �uid dynamics, to let one of his students
make a theoretical study of the in�uence of Earth�s rotation on wind-driven
currents. Bjerknes invited Walfrid Ekman and he presented his �ndings in
his doctoral thesis in 1902. Ekman�s work was "the �rst of a remarkable
series of studies conducted during the �rst half of the twentieth century that
led to an understanding of how winds drive the ocean�s circulation" [3]. In
this paper, we consider the mathematical model that Ekman developed to
explain the angle at which surface currents make with a steady blowing wind.

3 The Modeling

To model the movement of ocean�s surface means to write its equation of mo-
tion, Newton�s second low (F = ma), which describes the velocity of surface
currents. To specify the forces and accelerations involved, we need to specify
a frame of reference. Taking an arbitrary point of ocean�s surface as an ori-
gin, we set a three-dimensional Cartesian coordinate system where the x-axis
points east, the y-axis points north, and the z-axis points vertically up. This
frame of reference is attached to the Earth, which rotates around its North-
South axis at constant angular speed !. This means our chosen coordinate
system is accelerating because its origin constantly changes its direction of
velocity. This non-inertial frame of reference is attached to, we assume, an
inertial frame of reference, a Cartesian coordiante system attached to the
center of the Earth. This assumption is based on the fact that the orbital
motion of Earth around the sun has such a large radius of curvature that it
is straight (hence, non-accelerating) to a very good approximation.

3.1 Accelerations

The equation of the acceleration of a particle in the rotating system with
respect to the inertial frame of reference is

du

dt
=
du0

dt
+

:
! � r0 + 2! � u0 + ! � (! � r0) + ! � ! �R;

where du0

dt
is the acceleration observed in the rotating system. The term

:
! � r0, called the transverse acceleration, appears if the angular velocity
vector is changing in either magnitude or direction or both. The term 2!�u0,
known as the Coriolis acceleration, appears whenever a particle moves in a
rotating coordinate system (except when the velocity u0 is parallel to the
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axis of rotation). The coriolis acceleration de�ects moving particles at right
angles to its direction of motion. The term ! � (! � u0), which is called
the centripetal acceleration, is directed toward the axis of rotation and is
perpendicular to the axis. We see that the transverse term is zero, and
ignore the centripetal accelerations because their values are small compared
to gravity.

The velocity of the current is a function of x, y, z, and t, and it consists
of an Eastern component, Northern component, and vertical component:

(u; v; w) = u = u(x; y; z; t):

In our model we are interested only with the horizontal movement of the
current and so we neglect the vertical component, w.

The term du0

dt
describes the parcel acceleration in the rotating frame of

reference; In other words, it describes the change in velocity. When we
talk about change in quantity in a �uid, there are two views describing this
change. We could describe how the velocity changes with respect to an
arbitrary �xed location (position) within the �uid, or, another view, we can
describe how the velocity of an arbitrary parcel is changed with time, tracing
the trajectory of a particular parcel. The �rst is called Eulerian and the
second is called Lagrangian. The velocity vector depends on position and
time. Hence, the total derivative of u with respect to t is

du

dt
=

@u

@x

dx

dt
+
@u

@y

dy

dt
+
@u

@z

dz

dt
+
@u

@t

=

�
@u

@x
;
@u

@y
;
@u

@z

�
:

�
dx

dt
;
dy

dt
;
dz

dt

�
+
@u

@t

= (u:r)u+ @u
@t

The total derivative is the Lagrangian rate of change while the partial
derivative is the Eulerian rate of change. The di¤erence is what we call,
in oceanographic and meteorological contexts, advective acceleration. The
Eulerian rate of change represents the local rate of change that is measured by
a �xed observer�s location. The advective acceleration is the advective change
that occurs due to �uid being transported into a new location. The total
change, which is experienced by an observer moving with the speed of the
�uid, is produced by the sum of these two changes. Thus, mathematically, in
the language of di¤erential calculus, the total derivative allow all independent
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variables to vary, while the local derivative with respect to t holds x, y, and
z constants [2].

The Coriolis acceleration is

2! � u0 = 2

������
i j k
0 ! cos � ! sin �
u v w

������
= 2 (!w cos � � !v sin �; !u sin �;�!u cos �)

Because w � v, the !w cos � term can be safely neglected. Hence,
we express the Coriolis acceleration here, to a good degree of accuracy, as
(�fv; fu; 0) where f = 2! sin �, called the Coriolis parameter.

3.2 Acting Forces

We consider the forces acting on a parcel of water in ocean surface. There
are three forces acting in this situation, the �rst of which is of course gravity.
Second, there are pressure forces acting accross opposite faces of the cube.
The presense of pressure di¤erences transfers momentum; the gradient of
pressure is the force that acts on the cube. Horizontal pressure gradients
act to transfer momentum from regions of high pressure to regions of low
pressure. So we have, using Gauss theorem,

�
Z
V

�gk dV +

Z
S

(�pn) dS = �
Z
V

�gk dV �
Z
V

rp dV

=

Z
V

(��gk �rp)dV:

The third force is friction. Friction here occurs in water surface due to
its contact with moving air (steady wind). That is, the force that occurs
when a parcel moves past another parcel. Water is a Newtonian �uid; that
is, it has a linear relationship between any applied shear and the vertical
velocity gradient. The constant of proportionality is called the dynamic vis-
cosity of the �uid. Its value indicates how resistant the �uid is in response
to shearing (deformation). The e¤ect of viscous shearing extends just over
a few millimeters. We would add these viscous stresses to the equation of
motion as friction. In our situation, however, the steady wind sets surface
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water in motion, called currents. The transfer of momentum starting from
the very surface layer which touches the moving air to the last a¤ected layer
occurs through small eddies. This is called turbulent �ow and it happens
when the velocity is high. In other words, because the velocity of this pow-
erful wind is high, every layer slides past the lower layer through turbulence.
The whole layer over which the velocity changes due to the blowing wind is
called a boundary layer. We assume the same linear relationship between
the turbulent viscous shear and the vertical velocity gradient. The constant
of proportionality, which is very larger than the dynamic viscosity, is called
the eddy viscosity, vv.
Now, we can write the equation of motion for the ocean

@u

@t
+ (u:r)u+ 2! � u = �1

�
rp+ g + friction; (1)

which is Navier-Stokes equation for a rotating �uid.

3.3 Formulation of Friction

In order to see how these turbulent viscous stresses arise from the equation
of motion, we consider the mean �ow over a short time interval, and write
every current as

u = u+ u0 (2)

where u is the mean �ow and u0 is the di¤erence between the exact value
and the mean �ow. We then substitute (2) into (1) and take the mean value
of the whole equation. Note that the mean value of u0 is zero:

u0 =
1

T

t+T
2Z

t�T
2

(u� u)dt = 1

T

t+T
2Z

t�T
2

u dt� 1

T

t+T
2Z

t�T
2

u dt

= u� 1

T
u tjt+

T
2

t�T
2

= 0

After simplifying, we obtain the same equation exept for the extra term

(u0:r)u0

This term is a tensor consisting of nine components which are called
Renolds stresses:
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0@ � 11 � 12 � 13
� 21 � 22 � 23
� 31 � 32 � 33

1A =

0@ ��u02 ��u0v0 ��u0w0
��v0u0 ��v02 ��v0w0
��w0u0 ��w0v0 ��w02

1A
The terms in the �rst row, e.g., transfer eastward momentum in the x, y,

and z directions. Thus, the frictional force in the x-direction would be

Fx =
@� 11
@x

+
@� 12
@y

+
@� 13
@z

"Each � ij measures the covariance between two of the �uctuating com-
ponents u0 = (u0; v0; w0)."[1]. As we stated above, because these terms play
the same role in transfering momentum that viscous stresses play, we assume
these terms have the same linear relationship; i.e,

� 31 = ��w0u0 = ��vv
@u

@z
;

and if vv is constant, then

@

@z
� 31 = vv

@2u

@z2
:

Now we are ready to write the x and y component form of the vector
equation (1):

@u

@t
+ u

@u

@x
+ v

@u

@y
+ w

@u

@z
� fv = �1

�

@p

@x
+ vv

@2u

@z2
+ vH

�
@2u

@x2
+
@2u

@y2

�

@v

@t
+ u

@v

@x
+ v

@v

@y
+ w

@v

@z
+ fu = �1

�

@p

@y
+ vv

@2v

@z2
+ vH

�
@2v

@x2
+
@2v

@y2

�
In the next section, we make some assumptions to reduce these two equa-

tions to the steady Ekman equations and solve them.
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4 The Solution

If we are interested only in the vertical transfer of momentum, then we ne-
glect the terms containing vH , eddy viscosity of horizontal transfer. Because
we ignored the vertical component of the velocity of the current, terms con-
taining w are zero. Ekman also assumed that the horizontal �ow is constant
and steady, which means

@

@t
=
@

@x
=
@

@y
= 0

The equations thus reduce to

�fv = �1
�

@p

@x
+ vv

@2u

@z2

fu = �1
�

@p

@y
+ vv

@2v

@z2

In deep ocean, the velocity of currents is no longer a¤ected by any external
forces, and the equation of motion (1) reduce to

2! � u = �1
�
rp+ g;

or, in component form

@p

@x
= �fv (3)

@p

@y
= ��fu

@p

@z
= ��g

These equations represent geostrophic �ow, in which the coriolis force is
balanced with the horizontal pressure gradient and gravity with the vertical
pressure. When this happens, deep water moves horizontally in circular
patterns over constant pressure levels, see Figure 1.
Then if we write

(u; v) = (uG + uE; vG + vE);

such that (uG; vG) , the geostrophic part, remains independent of z and
t, then, using (3), we have

7



�fvE = vv
@2uE
@z2

fuE = vv
@2vE
@z2

which are the steady Ekman equations. There are two methods to solve
them.

4.1 Method One

Using substitution, we obtain a fourth-order linear di¤erential equation with
constant coe¢ cients

@4uE
@z4

+

�
f

vv

�2
uE = 0:

To solve it, we write the associated auxiliary equation

r4 +

�
f

vv

�2
= 0;

which has roots

r2 = �i f
vv

=) r = �
r
if

vv

But using DeMoivre�s Theorem, we write r as a standard complex number
to be able to write the general solution

r = cos
�

4
+ i sin

�

4
=

1p
2
+

ip
2

Then

r = �
r
f

2vv
(1 + i) = ��(1 + i);

where we set � =
q

f
2vv
:

Then the general solution is

uE = Ae�(1+i)z +Be��(1+i)z

vE = Ce�(1+i)z +De��(1+i)z
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The �rst boundary condition is clearly

uE; vE ! 0 as z ! �1;
which makes B = D = 0. To obtain A and C, we substitute the general

solutions into the original equations, as follows

fuE = vv
@2vE
@z2

=) fAe(1+i)�z = vv
@2

@z2
Ce(1+i)�z = vvCe

(1+i)�z(1 + i)2�2

Then A = iC
The second boundary condition, at z = 0, we have � = �xz = vv @uE@z , and

then we have

vv
@u

@z

����
z=0

= � =) vvA(1 + i)� = � and

A =
�

vv(1 + i)�
=
�(1� i)
2vv�

Then, we obtain

uE = �

r
1

fvv
e�z cos

�
��z + �

4

�
vE = ��

r
1

fvv
e�z sin

�
��z + �

4

�
for z � 0. The details of this solution is given in [5].

4.2 Method Two

If we add the �rst equation to i times the second equation, we obtain a second
order di¤erential equation with constant coe¢ cients

ifW = vv
@2W

@z2

We have to develop two boundary conditions. One, as we get deeper into
the sea, W gets smaller and smaller, i.e,

W ! 0 as z ! �1:
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Two, at the sea surface (z = 0), we have

� = (�x; � y) = ��vv
�
@uE
@z
;
@vE
@z

�
= ��vv

@W

@z
;

where � = (�x; � y) = �x + i� y is the horizontal wind stress vector. The
the solution is

W = � �

�
p
ifvv

exp

(
z

r
if

vv

)

5 Analysis

At the sea surface (z = 0), the current moves to the right of the wind
in the Northern hemisphere at an angle of 45�.Every successive layer then
moves slightly slower to the right of the above layer until the coriolis force
completely balances the horizontal pressure gradient, the geostrophic �ow.
This movement of surface currents is called Ekman Spiral, see Figure 2. The
layer over which the velocity changes from that of the wind to the una¤ected
region by the wind is called boundary layer. Here, it is named Ekman layer,
and is usually around hundred meters thick. The reason why the movement
is to the right of the wind and not to the left is as follows: It actually is to
the right of the wind in the Northern hemisphere and to the left of the wind
in the Southern hemisphere, and this is due the direction of the coriolis force,
which results from the cross product the velocity and the angular velocity of
Earth, counterclockwise or clockwise.
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Figure 1: Geostrophic Flow
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Figure 2: Ekman Spiral
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